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PROPERTIES OF A MODEL FOR THE TURBULENT MIXING OF THE BOUNDARY 

BETWEEN ACCELERATED LIQUIDS DIFFERING IN DENSITY 

V. E. Neuvazhaev UDC 532.517.4 

A model has been proposed [i] for the turbulent mixing of the interface between acceler- 
ated liquids differing in density, which provides solutions to various problems in analytic form. 
This enables one to examine the behavior of the solution in relation to the empirical con- 
stants in the model. 

A more complicated model for turbulent mixing is considered here that has three param- 
eters, and the role of the newly introduced parameter is examined. Solutions are construct- 
ed for variable acceleration given by power, step, and slnusoidal laws. It is found that 
the width of the mixing region can vary by up to a factor 2 in accordance with the constant 
in the model that characterizes the role of the inertial mechanism. A solution is obtained 
for the mixing of a thin layer, and the problem is referred to an integral for the case of 
finite thickness. 

i. Model with Three Parameters. Two incompressible liquids differing in density are 
placed in an accelerated vessel, and the boundary between them is unstable if the accelera- 
tion is directed from the ~ight llquid into the heavy one. This is the Raylelgh-Taylor in- 
stability. If the viscosity and surface tension are negligibly small, as occurs for high 
accelerations, the boundary is disrupted. One substance begins to mix with the other, and 
experiment shows [2] that the mixing is turbulent. 

There are semlemplrical models for the turbulent mixing. A very simple one with one 
constant was proposed in [3]. An extension of the model is given in [4, 5]. 

The following is a more complicated semlempirical model for turbulent mixing with three 
parameters for a case of two incompressible substances: 

ap_ o op. ( i . i )  
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dpv 2 _ 
2 d r -  p D g  

Olnp pv ~ 4 ~/dlnp'~ 2 , 5 odlnp 
ox -- v -7- q- -g- ~=P/~ k--~--) t y pw ~ ;  (l. 2) 

d 0 ~z ~ + u  'u=--oOlnp'0z ' (1.3) 

D = lv;  (1.4) 

l = o~L, (1.5) 

where p is the density of the mixture of the heavy liquid (px) and the light one (02), v2 is the 
turbulent energy, g is the acceleration, which is dependent only on time, u is the speed of 
the mixture, which is defined by (1.3) for incompressible liquids [3], L is the effective 
width of the mixing region, which is determined below, and a, v, and az are empirical con- 
stants. 

We assume that the interface at the initial instant t = 0 coincides with the origin x = 
0, with the light and heavy liquids disposed respectively to left and right (Fig. I). 

The above system of equations has been derived by successive averaging of the initial 
gasdynamic equations. The true values of the density 0, veloclty u, pressure p, and entropy 
are replaced by the mean values and fluctuations: p = p + p',p = p + p',uh = uk + uk, k= 1,2,3 
etc. In the averaging we neglect the third correlations and the products of the second 
ones. The conservation equation for the turbulent energy is constructed in the usual way, 
with Prandtl's hypothesis used for the closure: 

uhp -- D , 

and the Landau assumption: 

, 0p' v $ 
= 

In (1.1)-(1.3) and subsequently, the bar on p is omitted. 

We now examine the meanings of the returns in (1.2). The first term in the right is 
the main one, which generates the turbulent mixing, and it is proportional to the square 
root of the Brent frequency, which characterizes the growth rate Qf the short-wave pertur- 
bations, and it is taken as zero in the case of stable flow, for negative values. 

The second term incorporates the dissipation of the turbulent energy. This establishes 
the turbulence damping law in the absence of generating sources. 

The third and fourth terms appear as a result of successive application of Prandtl's 
hypothesis. These terms were absent in [i]. 

These equations agree with the model of [4] if the liquids are Incompressible. 

We now consider the role of the last two terms in (1.2). Here we use the approximate 
approach of [i], where it was proposed to assume that 3v/Bx = 0. This approximation distorts 
the solution at the mixing front somewhat, but it greatly simplifies the initial equations, 
and in some cases enables one to obtain a solution in analytic form. 

In fact,,in that case the coefficient D is dependent only on time, so after the substi- 
tution 

d~ = D d t  ( 1 . 6 )  

equation (i.i) amounts to the diffusion equation, whose solution is known: 

P, +02  •  z 

where ~ is the probability integral. 

To construct the solution as a whole, it is necessary to determine the energy V 2 and 
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i n t e g r a t e  (1 .6 ) ,  By width L of  the mixing reg ion  we unders tood the e f f e c t i v e  wid th ,  which 
i s  found from the d imens ion less  d e n s i t y  

= (p _ p,}/(p~ -- p,) = (I/2)(i q- @) (1.7) 

as the distance between the points at which ~ - 0 . i  and 0.9. 

It follows from (1.7) that the mixing front defined in =his way propagates symmetri- 
cally to right and left and that the mixing widt~ is 

L = 4 ~ o ~  no = 0.906. (1.8) 

We now derive an equation for v. In (1.2) we transfer to the Euler coordinate. We 
average both parts of the equation over the mixing region and construct an equation for v. 
Here and subsequently, the bar over v will be omitted: 

du z kv_~ 2 0,4 (n-- i) g. (1.9) 
2d--~ + ~ = ~o(,+ i ) l /T '  

( . -  ty is,11<< / . -  
n = Pl/Pl. ( 1 . 1 0 )  

The solution to (1.9) is 

vi = 0,8 (n -- t) 
~0 (n + t) ~-gk g~2h-llid~" 

0 

We use (1.6) and (1.8) to get an equation defining T(t). ~ In some cases the solution can be 
constructed in analytic form. For example, if the acceleration g is constant up to a cer- 
tain instant ~o (g = go) and is then zero, we have 

where 

L = 

I n--i = A ~ - ~  g0t,  t ~ t 0, 

/ n - - t  , [  2k) ' - - 'o  1'I(I+'h) A ~ - ~  goto 2 (i + ) to, to +lJ , t 

(1.11) 

6,4r 
A = ~ - - ~ .  

This s o l u t i o n  can be used in  examining the e f f e c t s  of  the parameters :  the  c o n s t a n t s  a ,  v, 
and a2. 

Parameter  k according  to (1.10) i s  dependent on a ,  ~ ,  and a l  as wel l  as on ( n - - t ) / ( n ~ - i ) ,  
which i s  c a l l e d  the Atwood number. With the  a c c e l e r a t i o n  cu t  ou t ,  k de te rmines  the damping 
of the t u r b u l e n t  mixing.  T h e o r e t i c a l  e s t i m a t e s  [6] imply t h a t  the tu rbu lence  decays in  ac-  
cordance with a 2/7 law, i.e., the characteristic turbulent length I is dependent on time: 

INto/7. 

Then for small Atwood numbers we have 

t/(i -J- 2ko) = 2/7, k o = ~/ ( t6q~ ~) = 5/4. ( l .  12) 

The constant Ao is determined at the stage of mixing with constant acceleration, which 
is described by the upper equation in 41.11). This is taken from experiment as Ao = 0.09 
[2]. 

Note that the mixing width is linearly dependent on the Atwood number when the latter 
is small (n ~ 1), which agrees with the results of [3], where the logarithmic relation 
l n n ~ _ 2 ( n - - t ) / ( n - t - i )  was given.  

In the general case, the dependence on the Atwood number is more complicated. While 
the value of az is unimportant at small Atwood numbers, there is an effect in the general 
case. Figure 2 gives the dependence of A and k on (n--1)/(n~1) as constructed for a2 = 
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0 and i0. The curves show that A and k remain approximately constant and are only slightly 
dependent on a2 for (n--i)/(nq-i)<0,6. 

Then the third parameter a2 can be determined only in carefully formulated experiments, 
which may reveal these relationships. In what follows we put a2 = 0. 

2. Variable Acceleration. The acceleration is often inconstant in experiments, and 
therefore one uses a characteristic readily measured: the displacement s, which is related 
to the acceleration by the obvious equation 

One of the main parameters A characterizes the time course of the mixing and is usually de- 
termined from (i. Ii) and (2.1): 

L/2s = A(n -- l)/(n q- i). (2.2)  

For constant acceleration and constant n, the value of A is constant. However, this is 
not so for variable acceleration. We consider three cases of time-dependent acceleration 
below: i) power-law variation, 2) stepped with a constant period, and 3) sinusoidal. 

i) Let 

g = gotm (2.3) 

where the power m may be positive or negative. Apart from special cases, we assume that 
m > --i. 

The displacement s as a function of the variable T is calculated in the appendix. Here 
(1.8) defines L as a function of z, Then the relation corresponding to (2.2) but for the 
case of variable acceleration is readily derived: 

L 2(i+4k) (i +m) An i (2 .4)  
"~s = ( i+4k)(2+m)Wra n ~ t "  

C l e a r l y ,  f o r  m = 0 ( cons t an t  a c c e l e r a t i o n ) ,  the  l a t t e r  expres s ion  becomes (2 .2 ) .  The co-  
factor occurring for m > 0 is greater than i but for m < 0 it is less than l. 

Therefore, if (2.2) is used in processing the experimental data, the constant increases 
with rising acceleration, whereas it falls with decreasing. With k ffi 5/4 

L iq-m n - - !  
~ = t + Tm/t2 A n q .  f 

There are two limiting cases. If we assume that k is small, the factor in (2.4) is in- 
dependent of m. If m is close to--i, the acceleration falls rapidly and the factor is small, 
and mixing hardly occurs. 

2) Let the acceleration follow the law 

/ 2g~ 2 ( / - -  i) t ~  t < ( 2 / - -  l)t~ (2.5)  
g = [ o ,  ( 2 i - - l ) t o < t < 2 i t  o, i = i ,  2 . . . .  

Such an acceleration is obtained at the interface between two slightly compressible liquids 
at rest at the initial instant that are accelerated from the llght-llquld side by a piston 
with a constant acceleration. 

In this formulation, the solution is not self-modellng. However, an asymptotic state 
is set up at large times, which we derive. The interface as a whole is displaced as for a 
constant acceleration go. The problem is to estimate the chamge in (2.2). 

If k is small, this means that parameter v is small and the inertia plays a large part 
in (1.2). We put formally k ffi: O. 

Equations (1.4)-(1.6) and (1.9) are integrated, and the solution for the width takes 
the form 

n--1 L(k= 0) = Ao ~ - ~  2s, ,40= A(k= 0)= 6 , 4 ~ .  (2.6) 
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This  a p p l i e s  f o r  an a r b i t r a r y  t ime dependence  o f  the  a c c e l e r a t i o n .  

I f  k i s  l a r g e  ( i t  i s  s u f f i c i e n t  to  t ake  k >> 0 . 2 5 ) ,  t hen  (1 .9 )  

0.4(n--|) ~_~ 
= ~o(. + t) g ' 

and the solution is o b t a i n e d  in the form 

can be replaced by 

'C ) L (k :> 0 ,25)=  At ~ . .  i ]/~dt (2 .7 )  

t,6r 
~1~ = A (k ~ 0,25) = " - i ' - ,  

which i s  e q u i v a l e n t  to  the  s o l u t i o n  in  [ 3 ] ,  where the  i n e r t i a  in  the  t u r b u l e n t  mixing was 
n e g l e c t e d .  

For  k sma l l ,  (2 .2 )  i s  a l s o  obeyed f o r  v a r i a b l e  a c c e l e r a t i o n  on the  b a s i s  o f  ( 2 . 6 ) .  I f  
k >> 0 .25 ,  i t  f o l l o w s  from (2 .7 )  t h a t  t he  r a t i o  o f  (2 .2 )  i s  no l o n g e r  c o n s t a n t .  In  f a c t ,  

L(k~O.~) = AI,-- l I ~ .+ i (t), 

,r ( 0  = 2s. 

The f a c t o r  I ( t )  i s  dependen t  on t ime and can be c a l c u l a t e d .  

For the stepped acceleration of (2.5) we get I(0) - i, while I(| - 0.5 for large times; 
in fact, l(t) is given by 

it 
.4- t --.~q-, if i is odd, 

l(lto) = ,  t (2 .8 )  
i ~ ,  if i is even. 

3) For sinusoidal acceleration 

the factor I is 
g = g , ( t  + (p sin (hi~to)) 

,E' "~ 
l (U~ = 2.ntq> + ~ f '  ' 
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where E is an elliptic integral of the second kind. If ~ =I, then E (~12, t) =I and 

I(ito) = 8i/(~2i ~ 2~). (2 .9)  

F igure  3 shows the  t ime dependence o f  I ( t )  ( p o i n t s  1 show (2 .8)  f o r  s t epped  a c c e l e r a t i o n  
and p o i n t s  2 show (2 .9)  f o r  s i n u s o i d a l  a c c e l e r a t i o n ) .  In r e a l  models ,  k ~ t . 2 5  , so in  t h a t  
case l(t) will be close to the value obtained above for k >> 0.25. 

3. Mixing of a Layer of Finite Width. A layer of material placed in a medium of a 
different density is displaced in any case, no matter what the sign of the acceleration, 
since one of the boundaries will always be unstable. 

In the first stage, before the mixing region reaches the stable boundary, the solution 
will be self-modeling. Then the second stage begins, which is not self-modeling. An asymp- 
totic solution for the second stage has been given [3] for one particular case. 

The model of [i] enables one to refer the layer mixing to integrals, while the mixing 
of a thin layer can be considered analytically. 

These limiting solutions are of essential value in checking the theory against experi- 
ment. According to section i, the mixing of the heavy layer of thickness Xo having density 
p, surrounded by material of density p2 is described by the solution 

Here for definiteness it has been assumed that the mixing begins at the boundary x = xo and 
the point x = 0 corresponds to the stable boundary. 

We introduce the dimensionless density 6 as follows: 

= P -- P2 
f 

(x0) p (0, ,) -- P2 20 2- -~  

The value of 6 alters monotonically from i and x = 0 to 0 and x = =. There is no front, so 
as previously we introduced the effective thickness of the mixing region. We put correspond- 
ingly x0.9----z(@ 0.9), ze. i =z (8=0.I) . The values of z0.9 and z0. i are found as the solu- 
tions to 

2W ) - �9 ~V~ y = ,.8,v 

(1) ( Z0.1 ~L ZO 

The effective width L is a certain function of T: 

L = Zo.i -- x o . , ,  = L(~). 

We obtain an equation for the turbulent velocity averaged over the mixing region v. 
section i, the initial equation (1.2~ is replaced by an approximate one. 
g ffi go, and get finally that 

t d v  ~ v v  ~ Po.9--Po.* v~(Po.9--Po.*) ~ 
2 d, +-~-~= go M ~o.sML 

(3.1) 

(3.2) 

As in 
We put a2 = 0 and 

(3.3) 

where ~/----- (Pz -~ p(0, z))/2L = p0,bL; 

po.~ - po,~ = o.8(p~ - p,)O(Xo/2 I/7) 

po,.~ = p,, -{-- [(ps - p~,)12]O(Xol2V"[-). 

685 



Sop 
A difference from section 1 is that the integral -~dx in the present case is different 

L 

from zero. However, throughout the region 0<x<oo it is equal to zero, while in the 
mixing region L it is small, and therefore it is neglected. 

Therefore, the solution is found by integrating the ordinary differential equation (3.3) 
together with the functional dependence of (3.2) for L as defined by the solution to (3.1). 
Equation (3.3) is linear in v ~, so the solution can be obtained as an integral. We use 
(1.6) to convert to the initial variable t: 

t = a ] (i/vL) d~. 
0 

We now find the solution for the thin layer. This is found in analytic form. We con- 
sider times for which T>>z0. We use an approximate representation for the probability in- 
tegral and expansion as a series to get the solution to (3.1) in explicit form: 

~.o = 0.92K7,  Xo, i = 4.291/r~. 
From (3.2) we have an expression for L: 

L = 3.37 1 / ~  

Then (3 .3 )  becomes 

t d ~  . vv ~ 0"Sgo ( ~ - - P 2 ) m o  ( 3 . 4 )  
" ~ - 4  ~2(3.37)2 ~ - -  3 . 3 7 ] / ~  P ~  " 

Here we have n e g l e c t e d  the  1 /3  2 te rm.  

It follows from (3.4) that at large times v for a thin layer tends to a constant value 

vn : 

= ~ ]/-L35Xogo(pl - -  P,)/~P~, (3 .5 )  

and the width follows a linear law 

L = 5.68~t. 

If the light layer of density Pa is surrounded by the heavy one of density 0,, then 0~ 
in the denominator in (3.5) should be replaced by 0,. 

We consider the limiting case where P2 = 0. If the light liquid is surrounded by the 
heavy one, the turbulent mixing occurs at the maximum rate, and the width in the limit fol- 
lows a linear law of maximal slope: 

L = 3.72=2( ]/xog/v)t. (3 .6)  

If the heavy one is surrounded by the light one (vacuum in the limit), then (3.5) is 
not applicable. The equation for the turbulent velocity will be different, since in that 
case the mass of the mixed material is here bounded, and the equation for the turbulent veloc- 

ity takes the form, 

t d. 2 vv' t.6~ 
~ ~q"a~(3.37)~ -- 3.37V~. 

We get a quadratic law for the width: 

t2"9~g t ~ (3 .7 )  
L---- 2 . ~ r  . 

Note that the characteristics of the initial layer do not appear in the coefficient. 

Within the framework of the above model, the asympototic laws of (3.6) and (3.7) are 
determined by the constants a and ~, which are taken from a comparison with experiment for 
constant and zero accelerations. Only experiment can determine whether this is so in fact. 
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Appendix u We calculate s as a function of the variable T. 
to T in (2.3): 

m 1 g = g z ~  , 

where g z  and ml are at present unknown. From (~.2) we have 

V~ = 0,8(n -- 2) 291 TC~m1+1)/~ 
(n---~- ~ (4k + i + 2mli 

Substitution for v in (1.6) gives a relation between t and T: 

For this purpose we convert 

We use the identity 

and find m i=m/2(mn u2), 

I/(!!, q- i) (4k ~- i -~ 2ml) ' ~(1-2mI)/4 
t 

V i . 6  Cn - -  1)gln o ( t  - -  2mz) ~," 

go {n -= gxtml 

Im m 

gx = go ~+m L ~ j  [ 2 (m q- 2)] ~-~ [ (n "'--0,81)(a(2km-- i) q-004k(m q-+m 2) q- I) ] m+z = 

We transform to T in (2.1) to get 

$= (4k -51) (m -5 2) ~- m qo n~-i 
(4k + i) (m + i) ~ n -- i ~" 

l. 

2. 

3. 

4. 

5. 

6. 
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